ksiazki24h.pl
wprowadź własne kryteria wyszukiwania książek: (jak szukać?)
Twój koszyk:   0 zł   zamówienie wysyłkowe >>>
Strona główna > opis książki

PROPAGATION DYNAMICS ON COMPLEX NETWORKS


SMALL M. CHEN G. FU X.

wydawnictwo: WILEY , rok wydania 2014, wydanie I

cena netto: 450.00 Twoja cena  427,50 zł + 5% vat - dodaj do koszyka

Propagation Dynamics on Complex Networks

Providing an introduction of general epidemic models, Propagation Dynamics on Complex Networks explores emerging topics of epidemic dynamics on complex networks, including theories, methods, and real-world applications with elementary and wide-coverage. This valuable text for researchers and students explores models evolving over complex networks and presents results concerning dynamics of Network-based models on a macroscopic scale. The text presents the fundamental knowledge needed to demonstrate how epidemic dynamical networks can be modeled, analyzed, and controlled along the state-of-the-art and recent progress in the field and related issues arising from various epidemic systems.


Preface xi Summary xiii

1 Introduction 1 1.1 Motivation and background 1 1.2 A brief history of mathematical epidemiology 2 1.3 Organization of the book 5 References 6

2 Various epidemic models on complex networks 10 2.1 Multiple stage models 10 2.2 Staged progression models 13 2.3 Stochastic SIS model 17 2.4 Models with population mobility 19 2.5 Models in meta-populations 22 2.6 Models with effective contacts 24 2.7 Models with two distinct routes 26 2.8 Models with competing strains 28 2.9 Models with competing strains and saturated infectivity 31 2.10 Models with birth and death of nodes and links 33 2.11 Models on weighted networks 34 2.12 Models on directed networks 38 2.13 Models on colored networks 40 2.14 Discrete epidemic models 44 References 47

3 Epidemic threshold analysis 53 3.1 Threshold analysis by the direct method 53 3.2 Epidemic spreading efficiency threshold and epidemic threshold 69 3.3 Epidemic thresholds and basic reproduction numbers 76 References 98

4 Networked models for SARS and avian influenza 101 4.1 Network models of real diseases 101 4.2 Plausible models for propagation of the SARS virus 102 4.3 Clustering model for SARS transmission: Application to epidemic control and risk assessment 108 4.4 Small-world and scale-free models for SARS transmission 114 4.5 Super-spreaders and the rate of transmission 118 4.6 Scale-free distribution of avian influenza outbreaks 124 4.7 Stratified model of ordinary influenza 130 References 136

5 Infectivity functions 139 5.1 A model with nontrivial infectivity function 140 5.2 Saturated infectivity 143 5.3 Nonlinear infectivity for SIS model on scale-free networks 143 References 148

6 SIS models with an infective medium 150 6.1 SIS model with an infective medium 150 6.2 A modified SIS model with an infective medium 159 6.3 Epidemic models with vectors between two separated networks 162 6.4 Epidemic transmission on interdependent networks 167 6.4.1 Theoretical modeling 168 6.5 Discussions and remarks 179 References 181

7 Epidemic control and awareness 184 7.1 SIS model with awareness 184 7.2 Discrete-time SIS model with awareness 192 7.3 Spreading dynamics of a disease-awareness SIS model on complex networks 198 7.4 Remarks and discussions 201 References 203

8 Adaptive mechanism between dynamics and epidemics 207 8.1 Adaptive mechanism between dynamical synchronization and epidemic behavior on complex networks 207 8.2 Interplay between collective behavior and spreading dynamics 216 References 228

9 Epidemic control and immunization 231 9.1 SIS model with immunization 231 9.2 Edge targeted strategy for controlling epidemic spreading on scale-free networks 235 9.3 Remarks and discussions 237 References 239

10 Global stability analysis 240 10.1 Global stability analysis of the modified model with an infective medium 240 10.2 Global dynamics of the model with vectors between two separated networks 241 10.3 Global behavior of disease transmission on interdependent networks 247 10.4 Global behavior of epidemic transmissions 250 10.5 Global attractivity of a network-based epidemic SIS model 260 10.6 Global stability of an epidemic model with birth and death and adaptive weights 264 10.7 Global dynamics of a generalized epidemic model 268 References 274

11 Information diffusion and pathogen propagation 277 11.1 Information diffusion and propagation on complex networks 277 11.2 Interplay between information of disease spreading and epidemic dynamics 281 11.3 Discussions and remarks 284 References 286

Appendix A Proofs of theorems 289 A.1 Transition from discrete-time linear system to continuous-time linear system 289 A.2 Proof of Lemma 6.1 291 A.3 Proof of Theorem 10.4 291 A.4 Proof of Theorem 10.3 292 A.5 Proof of Theorem 10.42 296

Appendix B Further proofs of results 302 B.1 Eigenvalues of the matrix p F in (6.27) 302 B.2 The matrix in (6.32) 304 B.3 Proof of (7.6) in Chapter 7 305 B.4 The positiveness of ': proof of ' > 0 in Section 9.1.2 306 B.5 The relation between and in Section 9.1.3 308 Index 311

328 pages, Hardcover

Po otrzymaniu zamówienia poinformujemy,
czy wybrany tytuł polskojęzyczny lub anglojęzyczny jest aktualnie na półce księgarni.

 
Wszelkie prawa zastrzeżone PROPRESS sp. z o.o. 2012-2022