Analiza matematyczna I dla studentów informatyki
Skrypt zawiera podstawowy materiał teoretyczny, liczne przykłady szczegółowych
rozwiązań zadań oraz kilkadziesiąt zadań do samodzielnego rozwiązania z
odpowiedziami i wskazówkami.
Opracowanie ma za zadanie ułatwienie studentom samodzielnej pracy oraz przygotowania
do sprawdzianów i egzaminów.
Skrypt jest adresowany do studentów kierunku informatyka, ale może być
wykorzystywany na wszystkich kierunkach uczelni technicznych.
1 Wstęp
2 Liczby rzeczywiste
2.1 Aksjomatyka liczb rzeczywistych
2.2 Kresy zbiorów
2.3 Liczby naturalne
2.4 Zadania
2.5 Odpowiedzi i wskazówki do zadań
3 Ciągi rzeczywiste
3.1 Granica ciągu
3.2 Ciągi monotoniczne
3.3 Liczba e
3.4 Podciągi
3.5 Ciągi Cauchy’ego
3.6 Zadania
3.7 Odpowiedzi i wskazówki do zadań
4 Granica i ciągłość funkcji jednej zmiennej
4.1 Granica funkcji
4.2 Asymptoty
4.3 Ciągłość funkcji
4.4 Funkcje cyklometryczne
4.5 Funkcja wykładnicza i logarytmiczna
4.6 Funkcje hiperboliczne
4.7 Funkcje elementarne
4.8 Własności funkcji ciągłych
4.9 Jednostajna ciągłość funkcji
4.10 Zadania
4.11 Odpowiedzi i wskazówki do zadań
5 Rachunek różniczkowy funkcji jednej zmiennej
5.1 Pochodna funkcji
5.2 Reguły obliczania pochodnej
5.3 Twierdzenia o wartości średniej i reguła de l’Hospitala
5.4 Ekstrema lokalne i monotoniczność
5.5 Pochodne wyższych rzędów
5.6 Funkcje wypukłe
5.7 Wzór Taylora
5.8 Wnioski ze wzoru Taylora
5.9 Badanie przebiegu zmienności funkcji
5.10 Zadania
5.11 Odpowiedzi i wskazówki do zadań
6 Funkcja pierwotna i całka nieoznaczona
6.1 Funkcja pierwotna
6.2 Całka nieoznaczona
6.3 Metody całkowania
6.4 Przykłady obliczania całek
6.5 Zadania
6.6 Odpowiedzi i wskazówki do zadań
7 Całka oznaczona i całka Riemanna
7.1 Całka oznaczona
7.2 Całka Riemanna
7.3 Całki niewłaściwe
7.3.1 Całki niewłaściwe pierwszego rodzaju
7.3.2 Całki niewłaściwe drugiego rodzaju
7.3.3 Kryteria zbieżności całek niewłaściwych
7.4 Zastosowania geometryczne całki Riemanna
7.5 Zadania
7.6 Odpowiedzi i wskazówki do zadań
Literatura
126 stron, oprawa miękka